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ANALYSIS OF NOTCH NETWORKS CONTAINING SYNCHRONOUSLY 
COMMUTATED CAPACITORS OR RC COMBINATIONS 

BY 

Bernard A. Asner, Jr. 

SUMMARY 

An extensive study is made of systems of differential equations that describe an 
adaptive tracking notch filter. The two basic networks considered are the coupled RC 
commutated network and the uncoupled RC commutated network. The coupled network 
leads to differential equations with time varying coefficients of a square wave nature; 
the other leads to a set of linear differential equations with periodic forcing functions. 
For the latter case, a frequency response function in closed form is obtained using 
complex convolution. In both cases,  explicit solutions are obtained by introducing jump 
functions. 

Time responses of actual networks are included to show the agreement with the 
theoretical analysis. 

SECTION I. INTRODUCTION 

The analysis of linear networks containing synchronously commutated capacitors 
o r  RC combinations, classified as linear time varying networks, can be handled in sev- 
eral different ways (Refs. 1 and 2) .  For mathematical convenience, it is often assumed 
that the commutating functions are of a known periodic form. One important and prac- 
tical commutator is a relay type of element that generates a periodic square wave. This 
report analyzes networks using square wave commutating functions. 

The motivation for the analysis was  the recent development of an adaptive tracking 
notch (ATN) filter. (Refs. 3 and 4) that utilizes synchronously commutated capacitors or 
RC combinations. The networks analyzed a r e  used in the ATN filter that will help sta- 
bilize large space vehicles, such as the Saturn V, by suppressing structural bending 
mode signals in the control loop. 

. Section 11 presents the detailed derivations of the dynamic equations for a syn- 
chronously commutated capacitor network. This network was the initial configuration 
used to develop the ATN filter. Three additional networks are shown and their dynamic 



equations stated. The conversions of the dynamic equations of the four networks from 
integral to differential form are presented in Section ID. The solutions of the resulting 
differential equations a r e  handled in Section N. Analytical and experimental time and 
frequency responses are obtained and compared. Excellent correspondence is found for 
all cases examined. Section V treats the very practical cases where the square*wave 
commutating functions are neither symmetrical nor in -quadrature with each other. 

SECTION 11. DERIVATION OF EQUATIONS 

A. COMMUTATED CAPACITOR NETWORK 

The basic circuit analyzed in this report is the commutated capacitor net- 
work shown in Figure I. .The objective of this network is to produce a signal with a 
fundamental component equal in magnitude but opposite in phase to the bending mode 
signal to be suppressed, which is present in the input signal ei( t) . 

- 
FIGURE I. RC COMMUTATED NETWORK 

The network of Figure i consists of a dc operation amplifier with two mechani- 
cally commutated capacitors connected in a negative feedback loop. A second negative 
feedback loop has a fixed and a variable resistor a s  shown. The capacitors a r e  com- 
mutated by double-pole double-throw relays driven by functions P and Q at the frequency 
of the particular bending mode signal to be suppressed. The forms of the P and Q func- 
tions a r e  shown in Figure 2 and a r e  either plus o r  minus one. 

P a P = I  and & . & = I .  

2 



FIGURE 2. COMMUTATING FUNCTIONS 

The P and Q functions are obtained from other circuits in the ATN filter. 

The output of the network of Figure i is obtained as follows: 

i . = i + i  
1 0 

ei Ke, --. -- i = ii - io - Ri 
Rf 

Assuming the grid voltage of the amplifier is zero, the voltages across the capaci- 
tors  are expressed as 

i 
i 

eci =jj- 1 ici dt 

Pici = i 

i c i = P .  i 

Qic2 = i 

ic2 = Q i ,  

Now, substituting Equations ( 4) and ( 5) into Equation ( 3) , 
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Replacing ici and b2 with P i and Q i, respectively, from Equation ( 7 )  , and then 
substituting the value for i from Equation ( 2 )  , Equation (8) becomes 

- ei 

Jnput 

where 

RC 
Com m utatec . 

Network I 

c, = c2 = c 

The solution of this integral equation in eo is the output of the commutated capaci- 
tor  network. 

FIGURE 3. NOTCH NETWORK 

The amplitude frequency response of the network of Figure 3 exhibits the charac- 
t eristic I f  notch. f f  

B. ADDITIONAL CIRCUITS 

In addition to the commutated capacitor network of Figure I ,  which is the 
coupled case of the current mode, the following circuits will also be considered: 

4 



ei T R2 

R 
w h e r e  T = RC and K = - 

R2 

FIGURE 4. UNCOUPLED RC COMMUTATED NETWORK, VOLTAGE MODE 

R - S P  (Kei  - R e o )  dt + &  SQ (Kei - -eo)  dt + e i  (K-I )  
R3 7 R3 

R 
w h e r e  T = RC and K = - 

R2 

FIGURE 5. COUPLED RC COMMUTATED NETWORK, VOLTAGE MODE 

5 



ei 

where T = RC 

FIGURE 6. UNCOUPLED RC COMMUTATED NETWORK, CURRENT MODE 

The derivation of the equations for these circuits is given in Reference 3. The 
terms voltage and current mode refer to the location of the commutated network with 
respect to the associated operational amplifier. With the proper selection of resistors,  
the two coupled circuits of Figufes 1 and 5 are equivalent, and the circuits of Figures 4 
and 6 are equivalent for the uncoupled circuits. Thus, the analysis of the four circuits 
reduces to Equation (9 )  of Figure i and Equation ( i o )  of Figure 4. 

Also note that the circuits of Figures 4 and 5 inherently contain the feedforward 
path of Figure 3. In contrast, the circuits of Figures i and 6 do not have the feedforward 
path. In Equation (10) , the factor K controls the output characteristics of the network 
shown in Figure 4. For example, if Rz = R, = R/2, the network exhibits a bandpass 
characteristic comparable to the network of Figure i. To obtain a notch with this net- 
work, it is only necessary to adjust the value of K. The value of K that results in the 
optimum depth of the notch is derived later. 

SECTION III. CONVERSION OF THE INTEGRAL EQUATIONS TO A SYSTEM 
OF DIFFERENTIAL EQUATIONS 

One possible approach to the solution of the derived Volterra integral equations 
is the conversion of the integral equations to'a system of first order differential equations 
with time varying coefficients. The existence of solutions for such systems is treated 

6 



extensively in the literature. However, the techniques to obtain an explicit solution are 
sparse. The time varying coefficients are discontinuous periodic functions, and it is 
possible to solve the differential equations by introducing a jump function as an auxiliary 
variable. This jump function enters because time is divided into a succession of equal 
intervals and the boundary values at the successive points of division can be interpolated 
by a jump function. 

2n I 
w f  In the following, P( t) and Q( t) have a period of T = - = - as shown in Figure 2. 

Equations (9)  and ( I O )  will be considered; each is treated separately. 

A. COUPLED COMMUTATED NETWORKS 

If eo (0)  = 0,  Equation (9)  can be reduced to a system of two differential 
equations using the substitutions: 

t 
yi = 1 P [ei - K'e,] ds f i  = P [ei - K'e,] 

0 

Thus 

or  

Using the relation P P = Q Q = 1 and substituting eo(t) from Equation (14) into Equa- 
tion ( 13) yield : 

K' where A = -. 
7 

7 



I l l  I 

For convenience, let 

Equation ( 15) now reads 

h + A ( I + P Q ) u =  ( P + Q ) e i  u(0) = 0 ( 17a) 

t + A( 1 - PQ) v = ( P  - Q) ei v(0)  = o  ( 17b) 

which is a system of two linear independent differential equations with periodically 
changing coefficients. 

The functions (I + PQ) , ( P  + Q) , (I - PQ) , and ( P  - Q) that appear in Equation 
(17) are shown in Figure 7. 

( P-Q) 

2 -  2 4  I 

3T/4 T 
T/4 T/2 

0 
T/2 3T/4 

T 
0 

T/4 

i -2 -. -2 - - 
FIGURE 7. FUNCTIONS OF P AND Q 

The output in terms of u and v ,  using Equations (14) and (16) , is 

V. 
P + Q  P - Q  

U+-  Teo(t) = - ( u + v )  + - ( u - v )  =- P Q 
2 2 2 2 
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Reference to Figure 7 shows that ( P  + Q) and ( P  - Q) can be expressed as 

0 5 t 5 T/4 0 O r t S T / 4  

0 T / 4 5 t 5 T / 2  2 T / 4 5 t  5 T/2 

(P+Q) = -2 T/2 5 t 5 3T/4 (P-Q) = 0 T/2 5 t 5 3T/4 { : 3 T / 4 5 t 5 T  ~ -2  3T/4 5 t 5 T 

... 
Equation (18) is then 

... 

0 5 t S T / 4  

T/4 5 t 5 T/2 

T/2 5 t 5 3T/4 

3T/4 5 t I T 

T 5 t I 5T/4 

5T/4 5 t 5 3T/2 

... 

I... ... 

Hence, the solutions for u (o r  v) need only be obtained for every odd ( o r  even) quarter- 
period. The solution of these equations will be postponed until the differential equations 
for the additional cases a re  derived. 

B. UNCOUPLED COMMUTATED NETWORK 

In Equation ( I O )  let R = R3; then 

L L L 

j Q ( e i  - e2)ds + ei(K - 2).  P(ei - ei)ds +- 
0 

P 
e, =; 7 

0 

9 



Now let 

For this uncoupled case el = Pyl( t) and e2 = Qy2( t) , so Equations (22) and (24) become 

7jTi + yi = Pei 

7?2 + YZ = Qei 

and Tquation (20) becomes 

SECTION IV. SOLUTION OF THE DIFFERENTIAL EQUATIONS 

A. COUPLED RC COMMUTATED NETWORK 

The first set of differential equations to be considered corresponds to the 
coupled RC commutated network of Figure I and the related Equatioqs (17a and 17b). The 
solbtions wili be restricted for functions of the input ei(t) which are believed to be of 
prime importance. 

I. Input Equals A sin (we t  + cp )  , u ..c- = ku. Let ei( t) = A sin (uct + cp) __ 
where uc = kw; k is a positive integer and cp is by definition the phase relationship with 
respect to the fundamental sine component of P square wave. The previously defined 

21T 27r 
0 T 

period of P( t) aQd Q( t) is T = - or w = -. Consider first Equation ( 17a) and refer 

10 
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I 

d + A f i  +PQ)u,= ( P + Q ) e i  ( 28) 

to Figure 7 for the functions ( 1 + PQ) and ( P  + Q) . The equation for u becomes a repeti- 
tion of four separate equations where the boundary conditions between solutions must be 
matched to obtain a continuous solution (Ref. 5 ) .  

For simplicity, t will be measured from the beginning of the nth cycle. The four 
separate differential equations are 

h3 + 2hu3 = -2A sin (kwt + @ T/2 5 t 5 3T/4 ( 29c) 

where u = u. ( j  = I, 2, 3, 4) in the quarter-period of interest. The value of ui ( T/4) is J the initial value of uz(t)  . Since u2(t) is equal to a constant, the initial value of ug(t) 
equals the final value of ui( t) . 

Let yi(n) be the initial value for  the nth cycle. The solutions of Equation (29) are: 

2A 
ui( t) = k2w2+4h2 [2h sin (ka t  + 40) - kw cos (kwt + cp) - ( 2 A  sin ga- kw cos scl) e-2ht] 

(30c) 

[2h sin (kwt + @ - kw COS (kwt + 50)] T/2 I t 5 3T/4 
2A 

k2u '+4A2 
- 



T Since sin (kut + 4d) has period - the final value of u4 for the nth cycle is the k' 
initial value, yi ( n  + 1) for  the ( n  -t 1) st cycle. Thus, 

yi(n + I) = u4( T) = u3 4 ("'> 

37r 37r 
2A sin ( k - +  4d) - kw cos ( k - +  p j .  k2w2 + 4A2 2 2 

- 

Substituting the value of ui( T/4) from Equation ( 30a) into this expression yields: 

where 

-AT ai = e 

7r -AT s i n ( k z + p ) - e  -A T/2 sin p +e  -AT/ 2 

2A 
bi = k2w2+4A2 

7r -AT 
cos (k  2 + p) -e cos -AT/2 cos p + e 

yi(n) is now extended to include non-integral values of n by introducing the jump 
function [yi(n) 3 , where the symbol [ X I  reads the greatest integer in x, if x is a number. 
Equation (32) becomes 

The solution of this linear difference equation (Ref. 5) is 

0 s n ,  [yi(0) = 01. ( 34) 

12 



Recovering the initial points of Equation (34) and introducing them in ui( t )  and 
u3( t) of Equation (30) result in the solution for ui( t) and u3( t) . 

The analysis for v of Equation (17b) follows exactly a s  in the solution for u and 
is summarized below. Corresponding to Equation (29) , 

+I = o  0 I t I T/4 

$2 + 2Av2 = 2A sin (kwt + sd) T/4 I t I T/2 

+3 = o  T/2 5 t 5 3T/4 

t4 + 2Av4 = -2A sin ( k a t  + (9 3T/4 d t 5 T 

Let y2(n) be the initial value for  the nth cycle of the vi equation. An analogous 
difference equation containing a2 and b2 similar to Equation (33) i s  obtained. 

From Equation (19) , the final solution is 

T/4 I t 5 T/2 ( n=O, I, 2 , .  . . ) 
T / 2 I t 5  3T/4 (k=1,2,3, . . . )  

( 36) 

3T/4 I t I T 

where 

2A 2 [2. sin (ka t  + q) - kw cos (kwt + (p) - c2e-" '̂3 
kza 2+4A ui(tYnYk) = 

ain - -2At e 
+ bi ai - I ( 0  d t 5 T/4) 

-2At  +2 
AT 3 v2(t,n,k) = k2w2+4A 2A FA sin ( k a t  + 'p) - kw COS (kwt + (P) - cie 

n AT ai - I - 2 ~ t -  
ai - i e 

+ b2 

13 



n 

4 
ai - i -2ht+hT/2 e - bi ai - i 

-v4(t,n,k) = 

n 
- b2 ai - i e ai - i -2ht+AT 

and 

-AT ai = a2 = e 

2A -A T/2 
bi = k2u2+4A2 

-hT -ci e -hT/2 
b2 = 

c2 = [2h sin q -  ko cos q ]  

c3 = 
37r 
2 2h sin (k -+  q) - k o  cos 

14 



Since n is a second independent variable (assuming k fixed) , this expression for 
eo( t) is valid for cycles during the transient buildup as well as for cycles during the 
steady state. 

Figures 8 through 15 show various cases for  the parameters considered. 
8 is an enlargement of a typical output wave shape for the input signal frequency equal 
to the switching frequency of the P and Q commutating functions with cp = 0" and depicts 
the transient buildup. The advantage of the second independent variable n is vividly 
shown for n = 0 and n = I. The four solution curves for  each cycle can also be noted. 
Figure 9 is a comparison of wave shapes of the steady state outputs for various fre- 
quencies. The amplitudes of the "square wavesT1 are relatively invariant for the values 
considered; however, this is not true in general. Figure 10 shows the output for  k = 3 
and k = 5. Figure 11 is a comparison of the output eo(t) with cp as a parameter. Com- 
paring the case for  cp = 22.5" with Figure 12 (an equipment run) shows the two wave 
shapes to be comparable. This can also be noticed by comparing Figure 13 for  cp = 80" 
with Figure 14. 

Figure 

Figure 15 is also an equipment run and is inserted here for comparison. 

2. Notch Frequency Analysis. In the previous section, a very general 
expression [Equation ( 36) ] -for-ihe output eo( t) was obtained. 
tion properly a s  a filter, the amplitude of the output must be kept to a minimum (by 
proper choice of parameters) when the circuit is being forced at the resonant o r  notch 
frequency ( w  = wc) . The investigation in this section is concerned with the notch fre- 
quency and is separated into three subsections. 
treated with cp as a parameter to compare analytical results with actual equipment time 
recordings, The special case for q = 0" is then considered in detail. Finally, an anal- 
ysis of the output wave for its first harmonic components is performed for cp = 0" .  The 
analysis for a variable cp is postponed until special commutating functions are considered. 

If the network is to func- 

First the waveshape of the output is 

Case a. w = wc 

In Equation (36 )  let k = I. Since e < i -AT 

n n -ATn lim ai = lim a2 = lim e = n- -. n -* n -* n -* 

Only steady state values are of interest. Therefore, we have assumed the limiting 
values. 

There is no loss of generality if A = I;  hence, by substituting for ai, b,, and b2, 
Equation (36)  becomes 

15 
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t I I I I I I I I I I I I I I 

8 1 2 3 4 5 6 ? a  9 10 i i  12 13 14 15 

Tiine - Seco;i.ds 

f = 0 .25  Hz f = 0 . 2 5  HZ cp = oo 
C 

k =  1 . 0  K '  = 0 . 2 5  A =' 1 . 0  

7 2 1 . 0 s  

FIGURE 8. RC COMMUTATED NETWORK OUTPUT VS TIME (COUPLED) 
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i 3  
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Time - Seconds 

f=O.5 HZ f = 0 . 5 H z  

k = 1 . 0  K '  = 0.  675 
C 

7 = 1 . 0 s  

C p =  oo 

f = 1 . 0  fiz 
k =  1 . 0  

7 = 1 . 0 s  

c p =  o o  

f = 1 . 4 H z  

k = 1 . 0  

7 = 1 . 0  s. 

Cp' o o  

f = 2 . 0  

k =  1 . 0  

7 = 1 . 0 s  

cp = o o  

A= 1 . 0  

f = 1 . O H z  

K ' =  0 .  675 
c 

A = 1..0 

f = 1 . 4  kz 
C 

K'  = 0.  675 

A. = 1 .  0 

f = 2 . 0  Hz 

K '  = 0 . 6 7 4  

A =  1 . 0  

C 

FIGURE 9. RC COMMUTATED NETWORK OUTPUT VS TIME (COUPLED) 
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FIGURE 10. RC COMMUTATED NETWORK OUTPUT VS TIME (COUPLED) 
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FIGURE 12. TIME TRACES 
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FIGURE F3. RC COMMUTATED NETWORK OUTPUT VS TIME (COUPLED) 
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FIGURE 14. TIME TRACES 
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FIGURE 15. TIME TRACES 
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I .  

2A sin ( u t  + $0) - w cos ( u t  + p) 

- 2 A j  

L 

w-+ 2A) cos 40 + (w - 2A) sinpe 
+ (  

-AT/2 I - e  

( 0  I t  I T/4) 

sin (ut + cp) - w cos ( u t  + p) 

1 w - 2A) cos p- (w + 2A) sin pe-2A(t-T/4) 
-AT/2 

+ (  
I - e  

(T/4 I t 5 T/2) 

r 

L 
1 

( W  + 21) cos p + (w - 2A) sin p e 
-AT/2 I - e  

(T/2 5 t I 3T/4) 

2A sin (wt + p) - w cos ( u t  + p) 1 2 
-vq(t) = w 2+4A2 

1 - ( W  - 2 ~ )  cos p-  (w + 2A)  sin pe-2A(t-3T/4) 
-AT/ 2 I - e  
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I' 

and 

( t  >> 0) 

These cases are shown in Figures 9,  i i ,  12, 13, 14, and 15. Note the similarity 
of the second graph in Figure li to the third time recording of Figure 12. Also note the 
similarity of Figure 13 fo r  cp = 80" to the t ime recording of Figure 14. 

Case b. w = wc, cp = 0" 

Let cp = 0" in Equation (37). Then, 

-AT/ 2 sin ut - w cos ut + 
i - e  

2 
UI (t) = w2+4h2 

( 0  5 t 5 T/4) 

w - 2 A  e -AT/2 sin w t  - w cos w t  + 
i - e  

(T/4 5 t 5 T/2) 
( 38) 

w + 2 A  -2A(  t-T/2) 

-AT/2 e 1 sin w t  - w cos w t  - - 
i - e  

(T/2 5 t 5 3T/4) 

2 
-u3 ( t ) = 2+4A2 

w - 2 A  -2A(t-3T/4) 

-AT/2 e 1 sin ut - w cos w t  - 
i - e  

(3T/4 5 t 5 T) 

Typical cases are shown in Figure 9. 
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Case c. Fourier Analysis 

atl 
2 eo(t) m - +  2 (am cos m w t  + p m  s i n m  ut) 

m=i 

and Equation ( 38) is used for  eo( t) , the amplitudes for  the fundamental frequency are 
calculated to be 

ao= 0 

/ / 

These equations can be put into a very convenient form by letting 

2A 2K' x = - = -  
w AT 

Thus 
7r 

- -X 

(x2 - 2x - i 2 
(x2 + 2x - i) - e 

n -- x i 
2 

a i  = K' n( l+x2) 

( i + x 2 )  ( i - e  ) 
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The functions a i K 1  and piK' are shown in Figure 16. 
8 

ture component ai  is nearly zero,  while pi M - r2K1 

In the operating region, the quadra- 

The following extremes are noted: 

1 i m a i = 0  
x -0 

lim a i =  0 
x-* 

I lim pi =- 
8 

l W i = *  K' x -0 x-* 

A s  previously noted, the output of the RC commutated network eo(t)  does not 
contain the feedforward element , hence the total output (neglecting higher harmonics) 
of the notch network of Figure 3 is 

xo = a i  cos ut + p i  sin w t  - sin ut 

or  

x M O  
0 

if 

It can also be shown that the notch depth is independent of cp. That i s ,  if 

e. = sin (u t  + cp) 
1 

then 

xo = (oil - sin cp)  cos ut + ( p  - cos cp)  sin ut 

does not depend on cp. The cumbersome but easy proof consists of substituting for ai  
and pi of this last expression, Equation (40) , and computing the absolute value of xo. 

3. Discussion of Differential Equation for Input Equal to A sin (wc t  + cp) 
.- ~ 

with wc # kw. If- the condition wc = kw is replaced by 

(41) 
w wc =- (m = 1,2,3...) m 

27 



FIGURE 16. QUADRATURE COMPONENTS AMPLITUDES VS 2 K ' / ~ w  (COUPLED) 
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FIGURE 17. VARIABLES Ui, Vi VS TIME 
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FIGURE 18. RC COMMUTATED NETWORK OUTPUT VS TIME (COUPLED) 
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then the input function will not repeat until t = Tc = mT. 
for yi(n + I) and y2(n + I) cannot be obtained until t = mT. 
u. and v j ( j  = I, 2,. . .) a re  continued until j = 4m. As an example, i f f ,  = . I, then Tc = 
IOT, yi(n + I) = ~ 4 0 (  IOT) , y2(n + I) = V ~ O (  IOT) . 

This implies that the condition 
Therefore, the equations for 

J 

A s  a final case, replace Equation (41) by 

where k and m are relatively prime integers. The external force has the period 

T, = - T; therefore, ui and vi will repeat at j = 4m and possess an ultra-subharmonic 
oscillation (Ref. 6) . Although um and vm must be calculated, this does not imply that 
the period for eo( t) will be mT. This is best visualized by comparing Figure 17 with 
the second graph of Figure 18. The period for u and v is 5T, while the resultant curve 
eo(t) has a period of 2.5T. 

m 
k 

B. UNCOUPLED RC COMMUTATED NETWORK 

I. General Solution. In contrast to Equation (17) for the commutated 
capacitor netwoTk,-Equations (25 and 26) for the circuit of Figure 4 a re  adaptable to a 
more sophisticated analysis, because the time-varying coefficients do not appear in 
the homogeneous part of the equations for yi and y2. Using Laplace transform theory, 
it is then possible to obtain a closed form solution. However, to investigate the notch, 
it is necessary to return to the jump function technique previously considered. In addi- 
tion, a frequency response function is found by using the real multiplication theorem of 
Laplace transform theory. 

First, consider Equation ( 25) 

+ yi = Pei. 

Since yi( 0) = 0,  the Laplace transform of each side gives 

where p is the Laplace operator, Yi(p) the Laplace transform of yi( t )  , and L {Pei} is 
the notation for taking the Laplace transform of the quantity in parenthesis. 

Solving Equation (43) 

-t’T t [P(t )  ei (t)l’$ e 
T 
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where the t sign indicates convolution of P( t) ei( t) and 
convolution, o r  Faltung, theorem , 

Therefore, by the 

or  

where ti is a dummy variable. A similar treatment of Equation (26) 

yields 

Substituting Equation (44) and (45) into Equation ( 27) gives the final solution for the 
output eo (t) 

t t 
&(ti) et'/' ei( ti) dt, P -t/T 

eo( t) = y e P( ti) et'/' ei( ti) dti, + ; 
0 0 

(46) 
+ ( K  - 2)e i -  

This equation has been programed using Runge Kutta on the IBM 7090 computer for 
various functions of ei(t) . Representative curves a r e  shown in Figures 19 to 26. Note 
that the output waveform has been slightly attenuated. This offers no problem since the 
amplitudes of the output wave can be adjusted by resistors R and R3 [Equation ( I O ) ]  to 
make the output voltage equal to the input voltage a t  direct current. The attenuation at 
the notch frequency ( w  = wc) is large (Fig. 20) , and the slight adjustment of R and R, 
has little effect on the output ,voltage. 

2. Notch Frequency Analysis. Equation (46) is ideal for digital program- 
ing; hoyever, its value for determining the optimum selection of K is limited. For that 
purpose, it is best to let ei = A sin wctand let P and Q have the same switching frequency 
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FIGURE 20. UNCOUPLED RC COMMUTATED NETWORK VS TIME 
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FIGURE 22. UNCOUPLED RC COMMUTATED NETWORK VS TIM3 
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FIGURE 23 
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f = 2 K = 2-  8/n2 7 = 1.0 s ei(t) = sin 2nfct f, = parameter 37 
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38 f = 2 K = 2 -  8/7r2 T = 1.0 s ei(t) = sin 2rrfct f, = parameter 





FIGURE 26. UNCOUPLED RC COMMUTATED NETWORK VS TIME 

40 f = 2 K = 2 - 8/n2 T = i. 0 s ei(t) = sin 23rfct fc = parameter 



as the input ( u  = wc) . 
( A  = i )  . Equation (25) then becomes a repetition of two separate equations where the 
bqundary conditions between solutions must be utilized to obtain a continuous solution. 
Thus the difference in the analysis of this section and Section IV-A-i is that only two 
equations a r e  to be considered here. These are: 

No generality is lost if the amplitude of the input equals one 

TjTii + yii = sin ut 

Gi2 + yiz = - sin ut 

T O S t I -  
2 

T - < t S T  
2 

where the second subscript refers to the half-period of interest. 

Omitting the algebra, the solutions are 

._ -e -nAT cosh A T/4) ,-Ad 
' " 1  sinh A T/4 

L I "  J 

( e  I t 5 T/2) 

sin ut - o cos w t  -w -e -nATcosh A T/4) .-At] 
sinh A T/4 

A = i/7 

Equation (25) could have been solved directly by using the Laplace transform. 
this Fame equation is solved in Reference 7. The approach as presented here by jump 
functions is twofold. First, it allows the separation of the steady state solution by 
letting n - a. Second, the analysis of the coupled network previously considered led 
to differential equations with time varying coefficients, where the Laplace transform 
becomes ineffective. 

In fact, 

Returning to Equation (26) , there is a repetition of three separate equations: 

7jTZ1 + y21 = sin ut (0 s t I T/4) ( 49a) 
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e 2 2  + y 2 2  = - sin ut 

e 2 3  + y 2 3  = sin ut 

whose solutions are 

(T/4 I t 5 3T/4) 

( 3 T / 4 5 t I T )  

AT sinh - 4 
sin w t  - w cos w t  + 

A +w 

-A( nT+t) 

sinh - 4 

-A( t-T/2) ' e  AT sinh - 4 

sin ut - w cos ut - 
YI2 2 = - h2+w2 

-A( nT+t) 

sinh - 4 

-A( t-T) e A 
AT sinh - 4 

sin ut - w cos ut + 

Equation (27) , which describes the output, is 

= PYI + Q Y ~  + (K-2) ei 

and can be rewritten using Equations (48) and ( 50) as 
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- . . . . . . . - . 

+ (K-2) sin ut Y l l  + Y21 
Y i l  - Y22 
Yi2 - Y22 + (K-2) sin ut 
Y i 2  Y23 + (K-2) sin ut 3T/4 5 t 5 T 

0 5 t 5 T/4 

( 51) 
+ (K-2) sin ut T/4 5 t 5 T/2 

T/2 5 t 5 3T/4 e&) = 

Again n is a second independent variable, and this expression is valid fo r  cycles during 
the transient buildup as well as for cycles during the steady state. Graphs for the notch 
frequency appear in Figures 19 and 20. 

3. Fourier ~. . Analysis. If 

and Equation ( Si) is used for the steady state values of eo( t) 
tudes for the fundamental are calculated to be: 

i. e. n - 00 , the ampli- 

w 
8A2 7rA coth - - 27r - 2w 

A T  2A2 8h(w2.;A2) coth __ . 
4 

w2. 
al=n(h2+Wq 

/3 = K-2 + 7 + 
A + u 2  ( A 2 + C J ) T  

If the amplitude of the fundamental (pi)  is forced to zero , then a value of K is obtained 
as a function of A = I/T and w. A t  the same time, the amplitude of the fundamental 
cosine component (al)  cannot be allowed to be too large. Since a i  does not contain the 
parameter K ,  its value will not be affected by an optimum choice of K. Therefore let 
pi = 0 and introduce the substitution x = i / w T  in Equation (52) which yields 

2 

i 
These functions are shown in Figure 27. For values of .27 5 - 5 il , ai 2 0. I. If 

i / w T  is restricted from this range, then the notch depth is greater than i O / i  if the proper 
value of K is selected. 

U T  
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4. A Frequency Response Function. Let 

where A is the amplitude and wc is the forcing circular frequency. As ca,n be seen from 
Equation ( 4 6 ) ,  there is again no loss of generality if A = i. The frequency response 
function (FRF)  to be considered is defined a s  

where Eo(p) and Ei(p) a r e  the Laplace transforms of eo(t)  and ei(t) , respectively. 
Equations (25) , (26)s and (27) will be investigated. Inspection of Equation (27) shows 
the necessity of taking the Laplace transform of P( t) yi( t) and &( t) yz( t) , where yl( t) and 
yz( t) a re  the solutions of Equations ( 25) and. (26) for the givqn input ei = elwct. To ob- 
tain these transforms, the following formulae ( see Appendik for  proofs) a r e  needed: 

The Laplace transform of Equation (25) yields 

T 
i ( P  - jwc) 2 

p - jwc YI(P) = 7p + i 
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where Equation (58) and the condition yi( 0) = 0 have been used. To obtain the Laplace 
transform of P( t) yi( t) , i. e. , the product of time functions, it suffices to use the "real 
multiplication" o r  %omplex convolution" theorem (Ref. 5) . That is, 

Let fi(t) = ~ ( t )  , f 2 ( t )  = yi(t) and use Equations (561, ( 6 0 ) ,  and (61) to give 

T 
T i  4 
4 TS+i  s - juc 

tanh ( s  - jut) - 
tanh(p-s) - - ds . (62) 

i c2+j- i 

Now Fi(p-s) has poles in the s-plane at 

s = p & j ( 2 n + i ) w  ( n =  O , i , 2  ,... ). 
A removable singularity exists at s = p,and F2( s) has poles in the s-plane at 

s = j [ oc  * ( 2 n +  i )u l  ( n =  O, i ,2 ,  ...) 

s = -  i /T .  

These poles are plotted in Figure 28. 

Poles 

FIGURE 28. INFINITE POLES FROM Fi(p-s) AND F ~ ( s )  
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To evaluate the line integral, Equation (62) , the contour enclosing the poles of Fi(p-s) 
is suitable. The contour selected is shown in Figure 28, which consists of a semicircle 
C of radius R with center a t  c2 and the vertical line c2 units to the right of the origin. It 
can be shown that the semicircle C contributes nothing to the line integral as  R -03. 
Therefore, it suffices to consider the sum of the residues of Fi(p-s) F2( s) at the poles 
s = p  f j(2n + i ) w .  This sum is 

4 T - - coth 4 ( p  - jwc) 
lr 

where the identity 

has been used. The decomposition into partial fractions of this expression (Ref. 8) is 

i Substitute this expression into Equation (63) , factor 
( P  - jo,) 

, and let p = ju, to obtain 

where 
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Since the contour in Figure 28 is clockwise, the expression on the right-hand side of 
Equation (64) is equal to the negative of FRF, as indicated. By a similar treatment, it 
can be shown that 

where 

From Equation (27) 

FRF = BFRF, + (K-2). 

Finally, if 

then 

x =  1 / 0 7  

r = w/wc 

2x [i - tanh; n ( x + j r g .  n(x + jr) FRF = (K-2) +- x + jr 

This function [Equation (66) I is graphed in Figures 29 to 33 for both amplitude 
and phase with x = i / w T  as a parameter. The distinction between K fixed and K optimal 
as noted on the graphs is that K optimal uses Equation (53b) for  the value of K. It is 
interesting to note that the maximum notch depth does not usually occur at the notch fre- 
quency. 

SECTION V. NONSYMMETRICAL COMMUTATING FUNCTIONS 

A solution to the commutated capacitor network has been given for the ideal case 
of symmetrical square waves. Reference 3 shows that neither the assumptions of sym- 
metrical square waves nor quadrature phase relationship is true in general. 

This section considers some asymmetrical and nonquadrature commutating func- 
tions and solves for the output function in the same manner as Section IV-A. The analy- 
sis is restricted to the notch frequency. No attempt is made, however, to find an 
optimum setting. 
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FIGURE 29. FREQUENCY RESPONSE FUNCTION - AMPLITUDE 
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FIGURE 31. FREQUENCY RESPONSE FUNCTION - AMPLITUDE 
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FIGURE 32. FREQUENCY RESPONSE FUNCTION - PHASE 
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A. PHASE DIFFERENCE 

+I 

P( t) 

Cases considered are: P( t) and Q( t) are ideal as shown in Figure 2. A 
Fourier analysis is performed for the case where the input frequency is the same as the 
notch frequency, but the input is out of phase with the notch frequency., A s  previously 
noted, the output of the notch filter (with feedforward) is independent of phase, but this 
is not true if the RC commutating network is considered alone. 

- I -  
I 

.I 

B. PHASE LAG 

5T/8 

-I-- 

Q(t) is nominal. Phase lag is equal to 3T/8 as shown in Figure 34. 

1 
FIGURE 34. NONSYMMETRICAL COMMUTATING FUNCTIONS 

(PHASE LAG) 

C. PHASE LAG WITH PHASE DIFFERENCE 

T 
8 P(t) is nominal, but shifted-. Q(t) is as shown in Figure 35. 

Case a, 

Let ei( t) = sin - t + cp e 1 
54 
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.t 
9T - 

I l l  8 

I 

Ff p ; 
FIGURE 35. NONSYMMETRICAL COMMUTATING FUNCTIONS 

The output eo( t) is given by Equation ( 30) . If 

2h 2K1 x = - = -  
W U T  

and 
00 

eo(t) - aO+z ( a m  cos w, t + p m  sin wm 
m=l  

then equation (30) yields 

a0=0 

2 sin cp-ncos cp+ m -- 
( i+x2) ( I-e 2 ) 

r 

x2- 2x- i) +( k 2 
n-x - 

( 1+x2) ( i - e - T  ) 

@+2x- I) - ( x2- 2x- 1 [ 
x2+2x- I) e -F] 

55 



x *  
n( i +x2) p *K' = 

2 x cos p+7r sin p- 
-m - 

( i+x2) ( i-e 2 ) 

These functions are shown in Figures 36 through 38, with p as a parameter. 

Case b. 

The output function for an input ei( t) = sin - t is 27r 
T 

where 

i 
- ui 

i 
- v2 

i 
- u3 

i 
- v4 

7 

7 

7 

7 

0 I t 5 T/8 

T/8 5 t I T/2 

T/2 5 t 5 5T/8 

5T/8 5 t I T 

,. r 

cos 4 

2+%-dTA 
e 2 

-AT/4 
sin u t - w  cos ut + 

1 - e  
vg = 

-u3 = - ui (t-T/2) 

-174 = - ~2 (t-T/2) 

K' and A =F. 

T 5T - 5 t 5 -  
2 8 

5T - 5 t 5 T  
8 

* (67b) 
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FIGURE 37. QUADRATURE COMPONENT AMPLITUDE VS 2K'/wT ( COUPLED - C Y ,  K' , 
ENLARGEMENT OF FIGURE 36) 
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This function is shown below for  the parametric values of 

A = K’/T = .675/1 = .675 T = f = i  
, 
i 

eo(t) 

+. 5 

-. 5 

- i- 

I T -tt r /8  T/2 15T/8 i 

7-u2 I 

FIGURE 39. RC COMMUTATED NETWORK OUTPUT CONSIDERING A 
NONSYMMETRICAL COMMUTATING FUNCTION 

T 
2 Figure 39 shows eo( t) to be asymmetric about t = - as expected. The difference in 

amplitude of v2 and ui has appeared in most of the equipment runs (Fig. 12) .  

A Fourier analysis of Equation (68) yields 

( x + i ) - e  2 
( 2 4 5 )  +&x 

( i  + x 2 ) ( i  - e - 7 4 4 )  
‘ X  

n( i + x2) PK’ = 
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EquFtions (69a) and (69b) a r e  shown in Figure 40. A large cosine component 
(a -. 16) can be noticed. 

Case c. 

The output eo( t) is 

:3 
7 

- u3 - 
7 

O s t s T / 8  

- T 5 t 5 3T/8 
-8 

- 3T 5 t c 5T/8 
8 

r 

T o s t s -  
8 

2 2h sin ( w t  + qd) - w cos (ut  + qd) + 
w2+4A [ v2 = 

- 3hT/ 4 1 

T 3T - s t s - - .  
8 8 
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FIGURE 40. QUADRATURE COMPONENT AMPLITUDES FOR NONSYMMETRICAL 
COMMUTATING FUNCTIONS (COUPLED) 



- 2At+3hT/ 4 J -hT/4 
e (c2 + c3) + (c2 - c1)e - - 3AT/ 4 

i - e  

3T 5T 
-5 t 5-  

8 8 

sin (ut  + cp) - w COS (ut  + 'p) - 

- (53 - c2) - ( C i  + c2) e -2At+5AT/4 
e 1 -5AT/4 

-vq = 

I - e  

- 5 t s T  5T 
8 

and 

ci  = 2h sin cp - w cos cp 

c2 = 2h sin cp + T  - u cos cp +z 

c3 = 2h sin (cp +$) - w cos (cp +?) 
? ( 9 

h = K'/T. 

A Fourier analysis of Equation ( 70) yields 

I I 
- -7rx /4 - zc p x / 2  + Ae-37rx/4 
A + 2 5 e  + - 3nx/ 4 i - e  

- - -3m/4 .-57rX/4 
+ - -  

A - 25emmI2 -~ - 2Ee 

i - e  
+--  - 

-57rx/4 i - e  -5iX/4 
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;m sin (0 - 7r cos (D) (I + x2) 

A + Be 

i - e  

B+Ae  

i - e  

-C +De 

i - e  

+ 
-3m/4 . 

- 3nx/ 4 
+ 

- 
- 4 2  ( i  + x ) e  PJZ - 3 7 4 4  

2 + 
-5nx/ 4 

- I 4 2  

. -- - .  -5nx/4 
D - Ce 

i - e  
+ 
. 

- 7 

J PJ2 -3m/4 - ( x  - i) + xe 
2 

(nxcos  cp + 7 r  sin (D) ( i  +x2) 

1 A + -  -.rrx/2 [i - 5 ( i  + x ) e  -7rx/4 + 
-3m/4 i - e  

B+Ae  

i - e  
+ 

-3m/4 

-C +De 

i - e  
+ 

1 D - Ce 

I - e  
t 

’ (7 ib)  

*( 7 ic )  
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I 

B = 1\12 (sin 40 + x COS q) 

c =  [ x ( < + i ) + G ] s i n q +  [ ~ x -  (i+a)] c o s q  

D = &i (-x sin q + cos q). 

Equations (7 ia )  , (7ib) , and (71c) a r e  shown in Figures 41 to 44, with 9 as a 
parameter. Figure 41 depicts the dc component which has not appeared in any of the 
previous analyses. 
is an enlargement of Figure 42 for q = 9" and q = 10". 

Figure 42 gives the amplitude of the cosine component. Figure 43 

Cases b and c a r e  considered to be extreme deviations from the normal sym- 
metrical square waves. As mentioned ear l ier ,  no attempt is made to find an optimum 
setting for the commutating network. 
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FIGURE 41. DC AMPLITUDE FOR NONSYMMETRICAL COMMUTATING FUNCTION (COUPLED) 



FIGURE 42. QUADRATURE COMPONENT AMPLITUDES FOR NONSYMMETRICAL 
COMMUTATING FUNCTIONS (COUPLED) 
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FIGURE 43. QUADRATURE COMPONENT AMPLITUDES FOR NONSYMMETRICAL 
COMMUTATING FUNCTIONS (COUPLED - ENLARGEMENT OF FIGURE 42) 
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FIGURE 44. QUADRATURE COMPONENT AMPLITUDES FOR NONSYMMETRICAL 
COMMUTATING FUNCTIONS (COUPLED) 



CONCLUSIONS 

Solutions have been obtained for the equations describing an adaptive tracking 
notch filter. For the uncoupled case,  a frequency response function is obtained in closed 
form, thus making it possible to analytically include the notch in a closed loop system. 
The coupled case does not admit to such an analysis; however, an explicit solution is 
still obtained for inputs considered important. Practical nonsymmetrical commutating 
functions are investigated and the complexity of the solutions is noted. 

Equipment time traces agree with the theoretical analysis, 
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APPENDM 

The purpose of this appendix is to derive Equations ( 57) through (59) .  Equations 
(55) and (56) a re  common transforms and can be found in many books on transform 
calculus (e. g. , Ref. 7). To derive Equation (57) , the translation theorem 

L{F(t-a) I(t-a)} = e  -aP f (p)  

is needed. In Equation (A- I) , I (t-a) is the unit step function defined as 

i(t-a) = 0 t - = a  

=I t l a  

Referring to Figure A-I ,  the function P has first been inverted and the result translated 
T/4 units to the right. 

-p 1 - t  

-I I 
T T -P(t-z) I (  t -2 

t 
.t -4 i 

FIGURE A-I. INVERSION AND TRANSLATION OF P( t) 
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The corresponding Laplace transforms a r e  

I T 
L(P} = - tanh p z  

P 

I T 
L(-P} = - - tanh p z  

P (56) 

where the last equation uses the previously mentioned translation theorem. The function 
Q can be constructed by adding Figure A-2 to the last figure of Figure A-I. 

T l(t)-l(t--$ 

FIGURE A-2. PULSE FUNCTION 

Now the Laplace transforin of Figure A-2 is 

L {I(,, - I = L(l ( t )}  - L l(t-z 
,pT { T)l 
4 - -  l e  - --• 

P P 

Therefore, 

T 

T 
T tanh p- 4 

,-p T - P v  - -  l e  
P P  P 

-- - -- 

= L  [i - sech 
P 
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The second translation theorem (Fig. A-2) 

L { e-at F( t ) }  =f(p+a) 

is needed to show Equations ( 58) and ( 59). Thus 

T 
tanh (p-jw,) 4 

(p-jo,) 

and 

L {ejwCt Q ]  =- i [i - sech (p  - jw,) P-Wc 
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